Микроскопия: методы исследований и особенности проведения

Вы пришли за важной информацией и сейчас поговорим о Методы микроскопии применяемые в медицине. Может быть в Вашем случае это было иначе, но расскажем как это бывает обычно. Внимание, всегда перед назначением себе диагнозов или лекарств/лечения нужно консультироваться у профессиональных специалистов в своей области и не заниматься самолечением. Конечно же на самые простые вопросы, можно быстро найти ответ и продиагностировать себя дома. Пишите свои пожелания в комменты, вместе мы улучшим и дополним качество предоставляемого материала.

Хотя бы один раз в год все люди проходят медицинские осмотры. Но мало кто знает, что происходит с их анализами в лаборатории, и какие диагностические мероприятия с ними проводят. А ведь от правильного лабораторного обследования зависит не только здоровье, но иногда даже жизнь. Поэтому методы микроскопического исследования играют немаловажную роль в выявлении и своевременном предупреждении различных вирусных и инфекционных заболеваний.

Микроскопия и ее разновидности

Микроскопия – исследование объектов посредством микроскопа. Предназначена для изучения микроорганизмов, а также иных объектов, которые непостижимы человеческому глазу. Имеет следующую классификацию:

Используется для исследования объектов под разными углами, при этом изучая их двумя глазами. Увеличение небольшое – 120-ти кратное. Такой вид микроскопии используют в оперативном лечении маленьких структур организма, которые недосягаемы для человеческого глаза; в изучении мёртвых тканей; в судебной медицине.

Принцип действия – поглощение непрозрачных объектов, структурами света, длина волн которых достигает 700-1200 нанометров. Чтобы провести инфракрасную микроскопию не нужно производить специальную химическую обработку объекта. Данный метод применяется в зоологии, науках о биологической природе человека. Используется микроскопия в медицине: инфракрасную микроскопию используют в нейрохирургических целях, а также при изучении глаз, их анатомии и физиологии.

Изучает свойства объекта посредством определения длины волн, которые поглощают ультрафиолетовое излучение, являясь способностью отдельного вещества, клетки, ткани данного объекта. Такой способностью обладают биополимеры, которые хранят генетический код; нуклеиновые кислоты; пропионовые кислоты; альфа-аминокислоты; калиевая соль; продукты азотистого обмена; лекарственные вещества; кристаллические вещества с температурой плавления больше 290 градусов. Благодаря ультрафиолетовой микроскопии определяют место концентрации искомых веществ, а, если объект живой, то можно исследовать его структурные изменения в процессе жизнедеятельности.

Основной принцип работы – изучение объектов посредством их свойств свечения в ультрафиолетовых лучах или сине-фиолетовой части спектра. Большинство биологических веществ, например, белки, молекулы небелковой природы, низкомолекулярные органические соединения и лекарственные препараты имеют «врожденную» люминесценцию. Иные вещества светятся лишь после добавления конкретных красителей – синтетических соединений природного характера, которые начинают светиться при контакте с ультрафиолетовыми и синими лучами. Такой краситель может попадать в клетку при малейшем контакте, а может распределяться по клеткам избирательно, окрашивая при этом отдельные биосоединения изучаемого объекта. В мероприятиях, посвященных гистохимическим исследованиям, метод люминесцентной микроскопии – это единственный способ обнаружить вирусную концентрацию в клетках, изучить структуру распада продуктов обмена веществ, определить антигены и антитела. Лечение таких болезней, как герпес, гнойное поражение железистых органов, воспаление тканей печени, грипп – не обходится без люминесцентной микроскопии. Также, с ее помощью можно распознать злокачественную опухоль, предупредить сердечно-сосудистые заболевания, исследовать микрофлору слизистой оболочки носа и диагностировать вирусные недуги.

Имеет общую структуру анализа с фазово-контрастной микроскопией, но в отличие от последней, где можно изучать лишь контуры исследуемого объекта, здесь появилась возможность делать микроскопическую экспертизу прозрачных объектов, а также брать количественный анализ. Такой результат появляется вследствие преломления луча света на два пучка: первый проходит через структурные компоненты изучаемого объекта, а второй минует их. В объективе микроскопа кажется, что оба пучка соединяются и налагаются друг на друга. Разница фаз, которая возникает, можно измерить посредством определения массы разнообразных клеточных структур. Если измерять данную разницу последовательно, используя показатели преломления, то можно узнать плотность, ширину и толщину изучаемых объектов и их тканей, содержится ли в них вода или иные компоненты, имеется ли в них белок. Химические и физические свойства мембран, активность ферментов, обмен веществ на клеточном уровне – это лишь малая часть того, что можно узнать благодаря интерференционной микроскопии.

Вы доверяете врачам и их назначениям?
Да
16.87%
Нет
14.11%
Доверяю, но проверяю все лекарства на отзывы в интернете от людей которые уже опробовали и только тогда начинаю принимать.
52.76%
Да, но только назначениям и врачам из платных клиник.
16.26%
Проголосовало: 326

Применяется при изучение живых неокрашенных объектов. Принцип действия – преломление луча света по отношению к излучаемому объекту. При этом видоизменяются размер и фаза волны. Фазово-контрастный микроскоп состоит из объектива с элементами, которые расщепляют поляризованный пучок света на несколько компонентов. Свет луча, который проходит сквозь объект через эти элементы, не изменяет свой цвет и амплитуду, но немного нарушается фаза его волны. Как вывод – разница размеров волн между проходящими сквозь объект лучами и световым фоном. В случае, если разница не меньше 0,25 длины волн – возникает изображение, на котором чёрный объект выделяется из светлого фона. Всё зависит от фазовой пластинки, встроенной в объектив микроскопа. Одним из подвидов данного метода микроскопии является амплитудно-контрастная, принцип действия которой строится лишь на изменении яркости и цветовой палитры фонового света. При этом улучшается качество изучения живых неокрашенных организмов. Своё применение амплитудно-контрастная микроскопия нашла в исследованиях заболеваний системы кровообращения; онкологии; биомедицины; паразитов, а также заболеваний, которые они вызывают; микробиологии и анатомии.

Применяется для исследования особо малых объектов, которые по своим размерам не больше рентгеновской волны (0,01-1 нм). Подразделяется на следующие подвиды: проекционная, работающая посредством источника излучения и регистрирующего устройства; отражательная – использует специальные монокристаллы, система зеркал, рассеянное на кристалле рентгеновское излучение.

Своё применение рентгеновская микроскопия нашла в изучении генезиса минералов, медицине, а также науке, изучающей химический состав и структуру металлов. Отличительной особенностью данного метода является возможность изучать непрепарированные живые клетки.

Читайте также:  Отзывы о крем-воске Здоров для суставов – что говорят врачи и покупатели Форум

Этот рентгеноструктурный анализ может быть лазерным – когда изучаются одиночные молекулы и их связи.

Для того, чтобы провести электронную микроскопию, объекты, которые являются изучаемым материалом, подвергаются физической и химической фиксации, после чего их обезвоживают и разделяют на ультратонкие срезы, чтобы было легче их контрастировать и исследовать.

Электронная микроскопия позволяет увеличивать изображение объекта на много сотен тысяч раз. Минусом данного метода я является то, что он предназначен для изучения неактивных, обезвоженных, мёртвых объектов. Научный вклад в медицину этой методики микроскопии – очень велик, но применять ее в диагностических и практических целях – пока невозможно. Световая и электронная микроскопия имеет общий признак – увеличение изображения с последующим описанием форм объекта и сравнением этих форм с функциональными, а также химическими свойствами

Применяется для исследования взаимодействия антигена и антител. Принцип действия: материал, который исследуется смешивают с иммунной сывороткой, инкубируют его; жидкость и твердые частицы разделяются на фракции по плотности; затем происходит осаждение антител и разделенных частиц на объект; после этого, к смешанному клеточному осадку добавляют вещество, усиливающее контрастность; и только после всего этого, полученный препарат исследуют под микроскопом.

Применяется для диагностики вирусного гепатита, а также для выявления антигенов, которые будут бороться с различными вирусными заболеваниями.

Обеспечивает цветное изображение, увеличенное в две-три тысячи раз. Также, при световой микроскопии возможно продолжительное наблюдение за подвижным объектом, и что немаловажно – микрокиносъёмка. Используется для оценки хода развития объекта, его состояния движения, а также для исследования его изменений под воздействием окружающих его факторов. Кроме разрешающей способности микроскопа, важную роль играет амплитуда светового луча и типология исследуемого объекта, так как свойства последнего имеют огромное влияние на оптическое излучение: цвет, контрастность, резкость, световая фаза, плоскость, по которой распространяется волна. Именно благодаря этим факторам и строится методология микроскопических исследований, например, в данном виде микроскопии, объект окрашивают, чтобы определить его свойства, потому что краска помогает изучить конкретные свойства убитых клеток. Но это не значит, что световая микроскопия занимается изучением лишь мертвых биологических объектов. Благодаря темнопольной микроскопии (подвид оптической), где свойства и чёткость изображения зависит ли излучения, которое рассеивается исследуемым образцом, освещающий световой пучок не попадает в глазок, и картинку изучаемого образца учёные видят в рассеянном свете. Используется для изучения водных одноклеточных организмов, а также живых объектов, которые могут быть как окрашенными, так и наоборот.

Принцип действия – поглощение непрозрачных объектов, структурами света, длина волн которых достигает 700-1200 нанометров. Чтобы провести инфракрасную микроскопию не нужно производить специальную химическую обработку объекта. Данный метод применяется в зоологии, науках о биологической природе человека. Используется микроскопия в медицине: инфракрасную микроскопию используют в нейрохирургических целях, а также при изучении глаз, их анатомии и физиологии.

Исследования с микроскопией широко применяются в лабораторной диагностике. Для чего они назначаются и какой подготовки требуют? Об анализах с микроскопией нам рассказала врач сети лабораторий «KDL» (партнёр «Клиники Эксперт» Пермь), руководитель медицинского отдела медицинского центра «Диапазон» Мария Васильевна Бисерова.

— Мария Васильевна, какие анализы проводятся с микроскопией?

— Посмотреть под микроскопом можно любой биологический материал: мазки со слизистых, соскобы с кожи, урогенитальные мазки. Также можно исследовать мокроту, плевральную, синовиальную жидкость, эякулят, мочу, кал, ногти, волосы. Исследования позволяют выявить признаки воспаления, определить морфотип инфекционного агента (палочковая, кокковая флора, элементы грибка, простейших). Цитологические и гистологические исследования тоже можно отнести к микроскопии. Чаще всего они используются при исследовании операционного материала или материала диагностической биопсии.

Все микроскопические тесты удобные, быстрые, но при этом субъективные, требующие профессионализма специалиста лабораторной диагностики.

Читайте материалы по теме:

— Что показывает общий анализ крови (ОАК) с микроскопией?

— ОАК позволяет выявить наличие воспаления в организме, оценить количество эритроцитов и тромбоцитов. Микроскопия традиционно используется для оценки лейкоцитарной формулы. По изменению состава этой формулы можно предположить наличие вирусного или бактериального процесса в организме.

Читайте материалы по теме:

— Выполняется ли микроскопия в общем анализе мочи (ОАМ)?

— Безусловно, микроскопия в ОАМ выполняется, и необходима для выявления воспалительного заболевания мочевыводящих путей. В современной лаборатории микроскопическое исследование мочи заменено автоматическим методом проточной цитометрии, который с большой точностью позволяет оценить клеточный состав мочи, так как прибор идентифицирует и подсчитывает до 65 000 элементов мочевого осадка. В некоторых случаях (при выявлении патологии) врачу всё же приходится самому дополнительно исследовать мочевой осадок под микроскопом.

— Как подготовиться к общему анализу мочи?

— Для исследования средняя порция утренней мочи собирается в стерильный одноразовый пластиковый контейнер. Обязательно предварительное проведение гигиенических процедур.

— Кому и для чего назначают анализы мазков из зева и со слизистой носа?

— По результату риноцитограммы (микроскопии мазков из носа) мы можем предположить инфекционную или аллергическую природу воспалительного процесса. При инфекционных заболеваниях носоглотки чаще используются методы прямого выявления возбудителя – это посевы на флору и исследования методом ПЦР.

Подробнее о ПЦР читайте в нашей статье

— Какие ещё микроскопические исследования проводят при заболеваниях органов дыхания?

— Если заболевание сопровождается кашлем, важен общий анализ мокроты. При микроскопии можно выявить наличие клеток и микроорганизмов, которые в норме не должны присутствовать в мокроте (лейкоциты, макрофаги, атипичные клетки, спирали Куршмана, кристаллы Шарко-Лейдена и др.). Это также позволяет оценить степень и предположить причину воспаления (вирусное, бактериальное, аллергическое).

Для подтверждения инфекционного агента точными тестами являются бактериологические и молекулярно-генетические (ПЦР).

— Как подготовиться к такому анализу?

— Мокрота собирается в стерильный контейнер путём откашливания утром, до приёма пищи, после чистки зубов и тщательного полоскания полости рта кипячёной водой. При этом слюна из полости рта не должна попасть в контейнер.

— Вы упомянули о микроскопическом анализе синовиальной жидкости. Как и для чего его проводят?

Читайте также:  Ребёнок в 4 месяца постоянно орёт

— Общий анализ синовиальной жидкости позволяет выявить природу заболевания (воспалительную, невоспалительную). При этом оцениваются как внешние свойства (цвет, вязкость), так и химический состав. Но получить синовиальную жидкость можно только при пункции сустава, эту процедуру проводит врач. В современной диагностике при заболеваниях суставов широко используется определение маркеров воспалительных, в частности, ревматических заболеваний в крови. Это быстрый и надёжный способ правильно поставить диагноз и назначить лечение.

Хотите узнать больше об анализах? Читайте статьи в нашей рубрике

Записаться и сдать лабораторные анализы можно здесь
ВНИМАНИЕ: услуга доступна не во всех городах

Редакция рекомендует:

Для справки:

Бисерова Мария Васильевна

Врач клинической лабораторной диагностики, руководитель медицинского отдела ООО «Медицинской центр «Диапазон»», сеть лабораторий KDL.

Исследования с микроскопией широко применяются в лабораторной диагностике. Для чего они назначаются и какой подготовки требуют? Об анализах с микроскопией нам рассказала врач сети лабораторий «KDL» (партнёр «Клиники Эксперт» Пермь), руководитель медицинского отдела медицинского центра «Диапазон» Мария Васильевна Бисерова.

Особенности проведения

Применение определенного алгоритма действий, определяющих высокий результат, обусловлено выбранной методикой проведения исследования с помощью микроскопа любого вида и конструкции. Его выработали однажды, и высокая точность, а также информативность полученных данных определили его постоянное использование при проведении такого вида исследований.

При помощи микроскопии можно выявить, в том числе, такие недуги как:

Оптическая, люминесцентная, световая, электронная и другие виды (методы) микроскопии описаны ниже.

Изучение мочи

Поскольку моча является конечным продуктом деятельности почек, ее исследование позволяет получить наиболее полное представление как о работе этих органов, так и процессах, которые в них происходят. Клетки мочи позволяют определить наличие в почках текущих воспалительных процессов, наличия инфекций, грибков и другой опасной для здоровья микрофлоры.

О моче также судят по таким показателям, как ее прозрачность, цвет, наличие осадка, реактивность. Кроме работы почек, моча содержит информацию об общем состоянии организма и крови. При помощи микроскопии мочи выявляется цистинурия, почечная недостаточность, другие нефрологические отклонения.

Исследования, проведенные с помощью микроскопа, позволяют получить максимальное количество информации об изучаемом объекте, поскольку с помощью этого инструмента можно получить наиболее четкое представление об исследуемом материале. Микроскоп, используемый для этого метода получения информации, является оборудованием с широкими возможностями, его применяют в самых разных целях, при этом качество полученной информации является максимально высоким. Микроскопия, как метод исследования, получил широкое применение, однако наиболее важен этот вид получения информации в медицине, где полученная информация дает возможность результативно бороться с самыми опасными для человека заболеваниями и составлять эффективные схемы лечебного воздействия.

Сегодня применяются различные по степени мощности и устройству микроскопы, обеспечивающие хорошие результаты исследований. Для разных целей могут использоваться различные модели этих устройств.

Исследований с помощью микроскопа

Наиболее информативными считаются следующие методики, при которых используется микроскопия:

  • изучение мочи и ее осадка ;
  • исследование образцов крови;
  • изучение мазка.

Каждый из перечисленных методов проводимого микроскопического исследования представляет собой совокупность определенных действий, которые выявляют структуру клеток исследуемого материала, процессов внутри клеток и на основании полученных данных дает возможность делать прогнозы и составлять схемы лечения.

Как производится микроскопия маска, поведает видеоролик ниже:

Что такое микроскопия, расскажет видео ниже:

Темнопольная микроскопия

Микроскопия в темном поле зрения основана на следующем принципе (рис. 1.14). Лучи освещают объект не снизу, а сбоку и не попадают в глаза наблюдателя: поле зрения остается темным, а объект на его фоне оказывается светящимся. Это достигается с помощью специального конденсора (параболоид) или обычного конденсора, прикрытого в центре кружком черной бумаги.

Препараты для темнопольной микроскопии готовят по типу «висячей» и «раздавленной» капли. При приготовлении препарата «раздавленная» капля исследуемый материал (бактериальную культуру в физиологическом растворе) наносят на предметное стекло, которое покрывают покровным стеклом. Капля материала заполняет все пространство между покровным и предметным стеклом, образуя ровный слой. Для приготовления «висячей» капли необходимо использовать специальные предметные стекла с углублением в центре и покровные стекла.

На середину покровного стекла наносят исследуемый материал. Края углубления на предметном стекле смазывают вазелином, и им накрывают покровное стекло так, чтобы капля находилась против центра углубления. Затем переворачивают препарат покровным стеклом вверх. Темнопольная микроскопия используется для изучения живых неокрашенных микроорганизмов.

Светлопольная микроскопия

Светлопольная микроскопия осуществляется с помощью обычного светового микроскопа, основной частью которого является объектив. На оправе объективов обозначается увеличение: 8, 10, 20, 40, 90.

При исследовании микробов применяется иммерсионная система (объектив). Иммерсионный объектив погружают в каплю кедрового масла, нанесенного на препарат. Кедровое масло имеет такой же коэффициент преломления, как и стекло, и этим достигается наименьшее рассеивание световых лучей (рис. 1.12).

Изображение, получаемое в объективе, увеличивает окуляр, состоящий из двух линз. В отечественных микроскопах применяются окуляры с увеличением 7, 10, 15 (рис. 1.13). Общее увеличение микроскопа определяется произведением увеличения объектива на увеличение окуляра. В микробиологии обычно используются увеличения в 900-1000 раз. Качество микроскопа зависит не от степени увеличения, а от его разрешающей способности.

Люминесцентная микроскопия

Люминесцентная микроскопия основана на способности некоторых веществ под влиянием падающего на них света испускать лучи с другой (обычно большей) длиной волны (флюоресцировать). Такие вещества называют флюорохромами (акридиновый желтый, родамин и др.). Объект, обработанный флюорохромом, при освещении ультрафиолетовыми лучами приобретает яркий цвет в темном поле зрения.

Основной частью люминесцентного микроскопа является осветитель, имеющий лампу ультрафиолетового цвета и систему фильтров к нему (рис. 1.16). Очень важно использование нефлуоресцентного иммерсионного масла.
Люминесцентная микроскопия в практической микробиологии используется для индикации и идентификации возбудителей инфекционных заболеваний.

Фазово-контрастная микроскопия

Фазово-контрастный конденсор представляет собой обычный объектив с револьвером и набором кольцевых диафрагм для каждого объектива. Фазовый объектив снабжен фазовой пластинкой, которую получают нанесением солей редкоземельных элементов на объектив. Изображение кольцевой диафрагмы совпадает с кольцом фазовой пластинки соответствующего объектива.

Фазово-контрастная микроскопия значительно повышает контрастность объекта и используется для изучения нативных препаратов.

Фазово-контрастный конденсор представляет собой обычный объектив с револьвером и набором кольцевых диафрагм для каждого объектива. Фазовый объектив снабжен фазовой пластинкой, которую получают нанесением солей редкоземельных элементов на объектив. Изображение кольцевой диафрагмы совпадает с кольцом фазовой пластинки соответствующего объектива.

12 биологических методов в картинках

Генеральный партнер цикла — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Читайте также:  Элевит без беременности

Одна из главных миссий «Биомолекулы» — докопаться до самых корней. Мы не просто рассказываем, какие новые факты обнаружили исследователи — мы говорим о том, как они их обнаружили, стараемся объяснить принципы биологических методик. Как вытащить ген из одного организма и вставить в другой? Как проследить в огромной клетке за судьбой нескольких крошечных молекул? Как возбудить одну крохотную группу нейронов в огромном мозге?

И вот мы решили рассказать о лабораторных методах более системно, собрать воедино в одной рубрике самые главные, самые современные биологические методики. Чтоб было интереснее и нагляднее, мы густо проиллюстрировали статьи и даже кое-где добавили анимации. Мы хотим, чтобы статьи новой рубрики были интересны и понятны даже случайному прохожему. И с другой стороны — чтобы они были так подробны, что даже профессионал мог бы обнаружить в них что-то новое. Мы собрали методики в 12 больших групп и собираемся сделать на их основе биометодический календарь. Ждите обновлений!

Редакторы

Один из старейших научных приборов — микроскоп — появился практически одновременно с наукой в ее современном виде. Этот канонический инструмент биолога более 400 лет был важнейшим средством для познания живого, и дал львиную долю наших знаний об устройстве жизни. Все это время эволюция микроскопа продолжалась, расширяя возможности увидеть неразличимое глазом.

На пороге микромира

Собирающие (увеличивающие) линзы были известны с XI века, и очки распространились по Европе уже в XIV веке. Традиционно изобретение первого составного микроскопа приписывают отцу и сыну — Хансу и Захарию Янсенам в 1595 году (рис. 1). Этот первый микроскоп мог увеличивать изображение всего в 3–9 раз. Есть версия, что первый микроскоп создал Корнелиус Дреббель. Среди изобретателей первых микроскопов был и Галилей, создавший свой микроскоп в 1609 году. Так или иначе, ни один из изобретателей не оставил подробных описаний микромира. Микроскопия как наука началась с Роберта Гука, который в 1665 году издал Micrographia — книгу, в которой подробно описывались устройство микроскопа, основы оптики и первые наблюдения за биологическими объектами, иллюстрированные подробными рисунками [1]. Микроскоп Гука (рис. 2) состоял из трех линз и источника света — эта основа сохраняется и в современной микроскопии. Однако достичь больших увеличений удалось с помощью более простой конструкции — Антони ван Левенгук использовал, казалось бы, примитивный микроскоп всего с одной линзой (рис. 2). Однако благодаря высочайшему качеству этой линзы ему удалось достичь 200-кратного увеличения и описать клетки простейших и даже крупные бактерии. Использование всего одной линзы не создавало оптических аберраций, которые только множились при конструировании более сложной оптической системы.

История микроскопии

Одна из главных миссий «Биомолекулы» — докопаться до самых корней. Мы не просто рассказываем, какие новые факты обнаружили исследователи — мы говорим о том, как они их обнаружили, стараемся объяснить принципы биологических методик. Как вытащить ген из одного организма и вставить в другой? Как проследить в огромной клетке за судьбой нескольких крошечных молекул? Как возбудить одну крохотную группу нейронов в огромном мозге?

Микроскопический метод исследования

Микроскопические методы исследований включают приготовление мазков и препаратов для микроскопирования. В большинстве случаев результаты микроскопических исследований носят ориентировочный характер (например, определяют отношение возбудителей к окраске), так как многие микроорганизмы лишены морфологических и тинкториальных особенностей. Тем не менее микроскопией материала можно определить некоторые морфологические признаки возбудителей (наличие ядер, жгутиков, внутриклеточных включений и т.д.), а также установить факт наличия или отсутствия микроорганизмов в присланных образцах.

Микробиологический метод исследования

Микробиологические методы исследований — «золотой стандарт» микробиологической диагностики, так как результаты микробиологических исследований позволяют точно установить факт наличия возбудителя в исследуемом материале. Идентификацию чистых культур (до вида микроорганизма) проводят с учётом морфологических, тинкториальных, культуральных, биохимических, токситенных и антигенных свойств микроорганизма. Большинство исследований включает определение чувствительности к антимикробным препаратам у выделенного возбудителя. Для эпидемиологической оценки роли микроорганизма проводят внутривидовую идентификацию определением фаговаров, биоваров, резистентваров и т.д.

Основу микробиологической диагностики инфекционных заболеваний составляют микроскопические, микробиологические, биологические, серологические и аллергологические методы.

Биологический метод исследования

Биологические методы исследований направлены на определение наличия токсинов возбудителя в исследуемом материале и на обнаружение возбудителя (особенно при незначительном исходном содержании в исследуемом образце). Методы включают заражение лабораторных животных исследуемым материалом с последующим выделением чистой культуры патогена либо установлением факта присутствия микробного токсина и его природы. Моделирование экспериментальных инфекций у чувствительных животных — важный инструмент изучения патогенеза заболевания и характера взаимодействий внутри системы микроорганизм-макроорганизм. Для проведения биологических проб используют только здоровых животных определённых массы тела и возраста. Инфекционный материал вводят внутрь, в дыхательные пути, внутрибрюшинно, внутривенно, внутримышечно, внутрикожно и подкожно, в переднюю камеру глаза, через трепанационное отверстие черепа, субокципитально (в большую цистерну головного мозга). У животных прижизненно забирают кровь, экссудат из брюшины, после гибели — кровь, кусочки различных органов, СМЖ, экссудат из различных полостей.

Микроскопические методы исследований включают приготовление мазков и препаратов для микроскопирования. В большинстве случаев результаты микроскопических исследований носят ориентировочный характер (например, определяют отношение возбудителей к окраске), так как многие микроорганизмы лишены морфологических и тинкториальных особенностей. Тем не менее микроскопией материала можно определить некоторые морфологические признаки возбудителей (наличие ядер, жгутиков, внутриклеточных включений и т.д.), а также установить факт наличия или отсутствия микроорганизмов в присланных образцах.

Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.

Оцените статью
Теоритическая помощь в медицине